Polynomial factorization through Toeplitz matrix computations
نویسندگان
چکیده
منابع مشابه
Block Toeplitz Methods in Polynomial Matrix Computations
Some block Toeplitz methods applied to polynomial matrices are reviewed. We focus on the computation of the structure (rank, null-space, infinite and finite structures) of an arbitrary rectangular polynomial matrix. We also introduce some applications of this structural information in control theory. All the methods outlined here are based on the computation of the null-spaces of suitable block...
متن کاملNumerical Stability of Block Toeplitz Algorithms in Polynomial Matrix Computations
We study the problem of computing the eigenstructure of a polynomial matrix. Via a backward error analysis we analyze the stability of some block Toeplitz algorithms to obtain this eigenstructure. We also elaborate on the nature of the problem, i.e. conditioning and posedness. Copyright c ©2005 IFAC.
متن کاملFast Matrix Polynomial Computations
Pour une matrice polynomiale P(x) de degr e d dans Mn;n(Kx]), o u K est un corps commutatif, une r eduction a la forme normale d'Hermite peut ^ etre calcul ee en O ~ (M(nd)) op erations arithm etiques, si M(n) est le co^ ut du produit de deux matrices n n sur K. De plus, une telle r eduction peut ^ etre obtenue en temps parall ele O(log +1 (nd)) en utilisant O(L(nd)) processeurs, si le probl em...
متن کاملA Toeplitz algorithm for polynomial J-spectral factorization
A block Toeplitz algorithm is proposed to perform the J-spectral factorization of a para-Hermitian polynomial matrix. The input matrix can be singular or indefinite, and it can have zeros along the imaginary axis. The key assumption is that the finite zeros of the input polynomial matrix are given as input data. The algorithm is based on numerically reliable operations only, namely computation ...
متن کاملSolving Polynomial Systems by Matrix Computations
Two main approaches are used, nowadays, to compute the roots of a zero-dimensional polynomial system. The rst one involves Grrbner basis computation, and applies to any zero-dimensional system. But, it is performed with exact arithmetic and, usually, big numbers appear during the computation. The other approach is based on resultant formulations and can be performed with oating point arithmetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2003
ISSN: 0024-3795
DOI: 10.1016/s0024-3795(02)00594-3